千尋位置如何應對衛星定位頭號“擾亂者”
手機導航會突然迷路,無人機會無故偏航,你可能還不知道,這背后的頭號“擾亂者”,是遠在天外的大氣電離層。電離層會折射衛星定位信號造成干擾,導致定位誤差的出現。
在電離層的強干擾下,千尋位置如何應對,保證高精度定位效果?
電離層對高精度定位的干擾有多大?
你可能還未明顯感知到,電離層干擾,正隨著第25個太陽活動周期的到來,變得愈加強烈。
而在高精度定位相關領域,比如測量測繪、智能駕駛、無人機等,最近不免遇到類似問題:“無人機怎么無故就偏航了?”,“為什么RTK終端在部分區域的空曠環境下,也出現浮動無法固定的情況?”
這是因為受到電離層活躍程度加劇的影響,容易出現定位精度不準甚至無法定位的情況。
電離層變化趨勢圖
眾所周知,影響GNSS定位的因素包括衛星鐘差、衛星軌道誤差等衛星相關誤差;多路徑誤差、電離層誤差、對流層誤差等信號傳播路徑相關誤差;以及衛星信號接收器相關誤差。
其中,影響最嚴重、最難以把握的一大障礙,就是電離層。電離層是在距離地面約60到1000千米范圍內的大氣高層,由那些被太陽輻射而電離的粒子組成,它是GNSS(全球導航衛星系統)衛星信號從太空到達地球終端的“必經之路”。
GNSS衛星信號在穿過電離層時,其傳播速度和方向都會發生改變,傳播路徑也會發生輕微的彎曲,使得衛星信號產生偏移和延遲,從而影響接收終端的定位精度。
隨著第25個太陽活動周期的到來,電離層變得更加難以預測。這場太陽活動周期以11年為單位,于2019年12月開始加劇上升,預計2025年7月達到峰值。
太陽活動周期圖
隨著電離層活躍加劇,區域內的電離層延遲誤差波動的幅度變大,頻率變快,不規則加劇,僅憑傳統的經驗判斷或常規的糾偏算法難以有效消除電離層誤差的影響,滿足高精度定位的需求。躺平還是應對?成為擺在全行業面前的問題。
應對電離層擾動的前提:優化算法模型
優化算法模型,獲得更精準的電離層建模結果,是應對電離層擾動的前提。
自2016年宣布國家北斗地基增強系統正式投入運行起 ,千尋位置的算法專家們就開始了和電離層擾動不斷較量的技術攻堅。
在國家北斗地基增強系統“一張網”穩定運行的6年間,千尋位置積累了業內獨有的、覆蓋不同地理環境、大氣環境等在內的多維度時空數據,為持續研究、精準分析以及機器學習的能力奠定了基礎。
在保障高精度定位高效、安全、精準、穩健的前提下,算法專家們基于長周期的數據積累,分析定位誤差產生的規律,構建出算法模型的變量與常量,嘗試包括自適應調優、機器學習等多種方法,不斷進行學習、訓練與調優,形成了適配包括電離層在內的多場景的算法模型,保證電離層活躍期間,仍然能夠獲得精準的電離層建模結果。
“破題”新思路:云端協同的技術方案
算法專家們并沒有就此止步。他們很快發現,在電離層活躍等級較強的場景,常規的建模技術存在提升空間小、算力成本高的瓶頸。面對升級的難題,他們另辟蹊徑,在業內首次實現了云(服務端)端(用戶端)協同的技術方案,將電離層活躍期間的固定率提高至95%以上,定位精度穩定在厘米級。
千尋位置算法專家陳華博士解釋道:“服務端與用戶端在電離層處理能力上各有優劣之處。服務端專注于大氣誤差,可以通過建模改正大部分的電離層誤差,并能夠利用區域信息對電離層活躍進行判斷,但卻無法解決電離層建模的殘余誤差問題。相比之下,用戶端雖然無法對電離層活躍情況進行判斷,但可以消除電離層活躍期間的服務端的建模殘余誤差?!?/p>
云端協同的技術方案創新性地將兩者的優劣勢進行取長補短,通過從服務端播發質量因子信息,“告訴”用戶端當前的電離層活躍程度以及是否需要開啟消電離層模式。
經過對比測試,在云端協同下,當消電離層模式開啟后,RTK設備的固定率從80%左右提升至95%以上,定位精度從分米級上升至厘米級。在具體的電離層活躍時段,效果對比更加明顯,RTK設備從基本無法獲得固定解提升為全程基本保持穩定固定解。
采納云端協同技術方案的前后效果對比
首創電離層查詢平臺,實現查詢與預警
對于極端活躍導致無法作業的情況,千尋位置推出業內首個電離層查詢平臺,則能夠實現對電離層活躍狀況的感知、預警與查詢,為戶外作業人員提供作業指導。
電離層查詢平臺通過平靜、中等、強、超強四個等級,呈現用戶當下所處位置的電離層活躍程度。并基于千尋位置對電離層長周期觀測數據和實際影響程度,闡釋不同的等級對定位精度的影響。例如,當電離層活躍等級處于強和超強時,將對定位精度產生較大乃至很大影響。此時,不建議RTK用戶進行戶外作業。
千尋位置電離層查詢平臺
千尋位置的算法專家青城博士介紹:“我們希望在全國范圍內構建精細化的電離層電子總含量的實時監測系統,如果這個監測系統未來可以像日常的天氣實況播報一樣,將能發揮更大的應用價值。”
聲明:以上內容來源于網絡文章轉載,轉自千尋位置官網文章,出于傳遞信息及學習之目的,不代表本網站的觀點、立場,本網站不對其真實性負責。
更多相關
如何使用全站儀進行導線測量?全站儀導線測量步驟
使用全站儀進行導線測量,通常用于建立和復測大地控制網,如建筑放樣、道路施工、地形測量等。南京環球測繪為您詳解全站儀導線測量基本步驟!以下是全站儀導線測量基本步驟:1.準備工作:-確定測量路線:規劃...
觀測準靜止鋒 CW-15多氣象要素探測無人機系統
最近,一組長了“大長腿”的縱橫大鵬CW-15無人機的照片刷爆了鵬人圈?! 『芏帙i友都在疑惑,CW-15無人機搭載什么新設備? 4月15日,縱橫股份與成都遠望聯合研發的首架垂直起降固定翼無人機CW-1...
“中國極地測繪之父”鄂棟臣逝世 曾連續11次挑戰南北極
那個曾經的放牛娃,那個曾連續11次挑戰南北極的漢子,那個為我國極地科考奉獻一生的老人,走了,去了比南北極更遙遠的地方?! ”蛔u為“中國極地測繪之父”的武大教授鄂棟臣,2月21日因病在武大中南醫院逝...
徠卡TS16全站儀 測量特點及行業應用
徠卡全站儀,總部位于瑞士Heerbrugg,擁有200余年歷史。是全球空間信息技術與解決方案的領導者,以其廣泛的產品系列和不斷創新而在全球享有盛譽,帶動并引領空間測量領域的發展和進步。徠卡測量系統在兩...
沉降觀測步驟詳細講解,高精度水準測量流程
沉降觀測即根據建筑物設置的觀測點與固定(永久性水準點)的測點進行觀測,測其沉降程度用數據表達,凡一層以上建筑、構筑物設計均要求設置觀測點。既然沉降觀測這么重要,今天就為大家帶來一期沉降觀測詳細步驟...
新應用,新方案--徠卡TPS罐體掃描檢測方案
應用背景: 油庫日常運營中,一旦使用中的罐體發生破壞,不僅會造成物料的損失,還會引發燃燒、爆炸、中毒等安全事故,所以罐體檢測是一項十分重要的工作,它能幫助罐區管理人員獲取罐體傾斜、橢圓度等信息,...
開放合作讓北斗更好“擁抱全球”
中國衛星導航系統管理辦公室主任冉承其22日在大會開幕式上說:“十年前,我們只有北斗一號,在軌衛星僅3顆,服務區域限于中國及周邊;十年后,我們有北斗二號、北斗三號,在軌衛星38顆,具備全球服務能力。這十...
道路測量新手入門,道路平曲線概念講解
道路平曲線是什么意思呢?其實可以理解不同坡度的道路之間,用于過渡的曲線,防止坡度突然變化影響車輛的平穩,坡度變化過大且沒有平曲線的話車輛容易騰空或者掛碰車輛底盤,造成危險。所以在道路測量中就離不開...